I am attempting to connect the RAK3272 BREAKOUT BOARD with the NUCLEO-F103RB BOARD via UART. I want to send the command “AT+VER=?” from the NUCLEO-F103RB to the RAK3272S using UART interrupt mode with a ring buffer, and then receive the result from the RAK3272S and send it back to the NUCLEO-F103RB.
Currently, I have connected the 3V3, GND, RX, and TX pins of the NUCLEO to the 3V3, GND, TX, and RX (UART2) pins of the RAK3272S respectively, with settings of 115200 Baud, 8N1. With this setup, I am connecting the NUCLEO to a computer via USB and using the SerialPortMon program to observe the results.
The code I have written for the NUCLEO works fine when connected directly to the USB and monitored via the SerialPortMon program, with normal string transmission and reception.
I would like to modify this code to be capable of sending and receiving AT commands. Do I need to upload code to the RAK3272S separately for this process?
Please find the attached code.
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <string.h>
/* 버퍼의 크기를 변경 */
#define UART_BUFFER_SIZE 20
#define uart &huart2
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
UART_HandleTypeDef huart2;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART2_UART_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* USER CODE BEGIN 0 */
/* Initialize ring buffer */
void Ringbuf_init(void)
{
_rx_buffer = &rx_buffer;
_tx_buffer = &tx_buffer;
/* Enable UART error interrupts: (frame error, noise error, overrun error) */
__HAL_UART_ENABLE_IT(uart, UART_IT_ERR);
/* Enable UART data register not empty interrupt */
__HAL_UART_ENABLE_IT(uart, UART_IT_RXNE);
}
/* Read data from rx_buffer and increment tail count */
int Uart_read(void)
{
// If head is ahead of tail, it means there is data
if(_rx_buffer->head == _rx_buffer->tail)
{
return -1;
}
else
{
unsigned char c = _rx_buffer->buffer[_rx_buffer->tail];
_rx_buffer->tail = (unsigned int)(_rx_buffer->tail + 1) % UART_BUFFER_SIZE;
return c;
}
}
/* Write data to tx_buffer and increment head count */
void Uart_write(int c)
{
if (c>=0)
{
int i = (_tx_buffer->head + 1) % UART_BUFFER_SIZE;
// If the output buffer is full, wait for the interrupt handler to empty the buffer
while (i == _tx_buffer->tail);
_tx_buffer->buffer[_tx_buffer->head] = (uint8_t)c;
_tx_buffer->head = i;
__HAL_UART_ENABLE_IT(uart, UART_IT_TXE); // Enable UART transmit interrupt
}
}
void Uart_sendstring (const char *s)
{
while(*s) Uart_write(*s++);
}
/* Check if there is data available in rx_buffer */
int IsDataAvailable(void)
{
return (uint16_t)(UART_BUFFER_SIZE + _rx_buffer->head - _rx_buffer->tail) % UART_BUFFER_SIZE;
}
/* Store a character in the ring buffer */
void store_char(unsigned char c, ring_buffer *buffer)
{
int i = (unsigned int)(buffer->head + 1) % UART_BUFFER_SIZE;
// If storing a character would overflow the buffer, do not store it or move the head
if(i != buffer->tail) {
buffer->buffer[buffer->head] = c;
buffer->head = i;
}
}
void Uart_isr (UART_HandleTypeDef *huart)
{
uint32_t isrflags = READ_REG(huart->Instance->SR);
uint32_t cr1its = READ_REG(huart->Instance->CR1);
/* If DR is not empty and Rx interrupt is enabled */
if (((isrflags & USART_SR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET))
{
huart->Instance->SR; /* Read status register */
unsigned char c = huart->Instance->DR; /* Read data register */
store_char (c, _rx_buffer); // Store data in buffer
return;
}
/* If transmit data register is empty and interrupt occurs */
if (((isrflags & USART_SR_TXE) != RESET) && ((cr1its & USART_CR1_TXEIE) != RESET))
{
if(tx_buffer.head == tx_buffer.tail)
{
// Buffer is empty, disable interrupt
__HAL_UART_DISABLE_IT(huart, UART_IT_TXE);
}
else
{
// There is more data in the output buffer, send the next byte
unsigned char c = tx_buffer.buffer[tx_buffer.tail];
tx_buffer.tail = (tx_buffer.tail + 1) % UART_BUFFER_SIZE;
huart->Instance->SR;
huart->Instance->DR = c;
}
return;
}
}
/* Read a string from rx_buffer */
void Get_string (char *buffer)
{
int index=0;
while (_rx_buffer->tail!=_rx_buffer->head)
{
if ((_rx_buffer->buffer[_rx_buffer->head-1] == '\n'))
{
buffer[index] = Uart_read();
index++;
}
else
{
break;
}
flag=1;
}
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_USART2_UART_Init();
/* USER CODE BEGIN 2 */
//printf("RAK connect example\n");
const char *at_command = "at+ver=?\r\n";
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
Uart_sendstring(at_command);
/* USER CODE END WHILE */
Get_string(buffer);
if(flag)
{
Uart_sendstring("the data is ");
Uart_sendstring(buffer);
Uart_sendstring("\r\n");
memset(buffer,'\0', UART_BUFFER_SIZE);
HAL_Delay(1000);
flag=0;
}
}
/* USER CODE BEGIN 3 */
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief USART2 Initialization Function
* @param None
* @retval None
*/
static void MX_USART2_UART_Init(void)
{
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART2_Init 2 */
/* USER CODE END USART2_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : B1_Pin */
GPIO_InitStruct.Pin = B1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : LD2_Pin */
GPIO_InitStruct.Pin = LD2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LD2_GPIO_Port, &GPIO_InitStruct);
/* EXTI interrupt init*/
HAL_NVIC_SetPriority(EXTI15_10_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(EXTI15_10_IRQn);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */